Additive manufacturing and metal direct 3D printing is growing fast in the manufacturing, and being also employed and tested for next generation heat exchangers. The University of Maryland is indeed developing heat exchangers produced using metal direct 3D printing to make lighter, cheaper and more efficient exchangers, achieving increased thermal transfer by 20% in heating and cooling applications.
Another great advantage of additive manufacturing is the possibility to design more efficient and complex designs, and quickly, reducing the manufacturing process from months to weeks. Leveraging on automated design algorithms is possibile to create unique shapes, aimed to increase surface thermal exchange boosting the thermal efficiency. In addition, the components are printed in a single-piece, avoiding secondary finishing processes and brazing, so that resistance to high-pressure and leakage can be strongly improved.











