Tempco Blog articles

Special materials in anodic oxidation bath cooling

Anodic oxidation, or anodizing, is a treatment employed for aluminium, a material that is very light, strong and quite resistant to corrosion. Among the many applications of aluminium, one of the best known is its use for extruded parts in windows. Here, the exposition to external atmospheric agents can degrade the look of the material, damaging it over time.

In order to make aluminium resistant to corrosion, the material thus undergoes a treatment in anodic oxidation baths, which generates a sort of chemical coating that makes it resistant to atmospheric agents corrosion. This is achieved using electro-chemical or electro-galvanic baths, where a direct current passes through. Thanks to an electrolytic process, a hard layer of anodic oxidation is deposited on the external surface of the aluminium.

 

There are different types of anodic oxidation processes, and the field of expertise in Tempco is to ensure the cooling of these baths. Indeed, the direct current that passes through them generates heating, and the temperature of the baths must be maintained at a temperature of approximately 20-25° C, depending on the kind of anodic oxidation process involved.

The application is simple, but there is a problem: usually, these baths don’t contain water, but a solution of sulphuric acid, in a low concentration of about 20%, depending on the type of anodic oxidation process. Cooling can then be achieved using chillers or main water with heat exchangers.

But heat exchangers have to be manufactured using special materials, in order to ensure resistance to corrosion by sulphuric acid. Therefore, for the cooling of anodic oxidation baths we supply traditional plate heat exchangers using materials such as titanium or high alloy stainless steel. We also employe immersion TCOIL dimple jacket exchangers, still being manufactured using high alloy stainless steel.

Cooling in anodic oxidation is also challenging on another prospect, which is the evaluation of the thermal duty of these exchangers. We will soon dedicate another video to this theme.

Subscribe here to our Tempco Newsletter – Solid Temperature.

Sustainable and smart forge cooling

We’ve successfully deployed an energy efficiency improvement project for a customer in the mechanical and engineering components sector. The customer employs a cooling plant for the forge and the thermal treatments equipped with evaporative towers and pumps.

Tempco raffreddamento forgiatura

The forge cooling plant includes in particular 4 pumps of 75 kw each, 4 pumps of 30 kw each and four evaporative towers of 22 kw each. The energy efficiency improvement intervention involved the implementation of inverters on the 75 kw pumps, which are managed by a pressure gauge that allows to contain the power consumption based on a reduced demand of water within the utilities.

Inverters have been implemented as well on the engines of evaporative towers, managed by the measurement of water temperature. The system allows to adapt and reduce the power consumption based on the thermal energy required and the ambient conditions.

Tempco inverter raffreddamento forgiatura

 

Finally, the overall management of the system is ensured with a PLC , using a management software developed and engineered by Tempco in order to make the management very flexible, tailored to meet the high demanding process quality requirements of the customer.

Tempco efficienza raffreddamento forgiatura

Tempco raffreddamento sostenibile forgiatura

Subscribe here to our Tempco Newsletter – Solid Temperature.

Shell and tube exchangers in biogas treatment for cogeneration

Cogeneration plants are becoming very much employed, aimed to the combined generation of heat and power using biogas. The biogas is a particular source or renewable energy, generated by the breakdown of organic matter or farm animal waste. Due to its characteristics, biogas is very rich in humidity, which makes it impossible to directly use it into engines, because the content of humidity would seriously damage them.

Biogas is a natural fuel, but in order to be employed in cogeneration plants it requires a special dehumidification treatment. This is achieved using systems composed by a chiller and shell and tube exchangers, especially engineered for this kind of application, which cool and dehumidify the biogas using a very cold mix of water and glicol.

 

In fact, biogas coming from digesters enters the system at temperatures of 35-40° C, and must be cooled at temperatures of approx. 4-5° C, eliminating the maximum possible amount of humidity contained. At this purpose, chillers at very low temperatures are employed, near the freezing point, at +1° C or +2° C.

On the outlet of the exchangers the biogas will then have a relative humidity of 100%, but with an extremely low absolute content of humidity. Installed on the outlet of the exchangers there are also condense separators, big tanks aimed to collect the condenses. Furthermore, on the output of the systems there are also additional filters, providing a further filtration of the biogas, which then is finally ready to enter the engines.

Subscribe here to our Tempco Newsletter – Solid Temperature.

Tri-clamp fitting brazed plate exchangers in biotechnology

We’ve just completed an interesting supply in the biotechnology sector, for a manufacturer of fermenters, bioreactors, FTT (tangential flow filtration) and bioprocessing systems. Aimed for thermostatation of his equipments, the customer selected our brazed plate heat exchangers Tempco T PLATE B, in a special version with tri-clamp fittings suitable for applications in pharma production.

biotecnologie scambiatori

 

Tri-clamp fitting is very common and classic connection type on pharma and food processes, due to the fact that they allow easy connection in assembly and disassembly operations of equipments. At the same time, they prevent pressure drops and ensure easy cleaning operations, without gaps where sediments and production waste could deposit, leading to bacteria growth. Products are in direct contact with stainless steel, and with a gasket which is FDA compliant, suitable for contact with food and drugs.

Tempco saldobrasati tri-clamp biotecnologie

 

We supply the same kind of fitting also on heat exchangers employed in beer production, wine and beverages in general. Similar brazed plate exchangers and thermoregulating units are also employed by another Tempco customer, who use them on his pharma equipments thus requiring the same kind of execution.

Scambiatori tri-clamp

Subscribe here to our Tempco Newsletter – Solid Temperature.

Smart efficiency and energy saving immersion-driven

I’m making available also here the presentation I did for the recent online edition of mcTER event, last November, dedicated to smart efficiency. Back then I took the opportunity to speak about energy savings and efficiency advantages that can be achieved with immersion TCOIL dimple jacket exchangers.

In the video, you can see a more in depth explanation of the project we deployed for the Marina di Loano seaport, in the Liguria Region. The direct immersion of dimple jacket exchangers in the seawater allowed to eliminate almost completely the pumping and suction systems of seawater that previously served traditional heat exchangers. The exchangers serve in turn a network of heat pumps, distributed all over the wide area of the seaport. The cut of electricity consumes have thus been really interesting.

TCOIL exchangers have been realized using a special material, super-duplex stainless steel, in order to ensure corrosion resistance against chlorides in the brackish water. After two years of operations by immersion, the exchangers naturally showed a certain level of biological and organic growth on the surfaces. That’s the reason why a special support structure has been designed, equipped with lifting hooks allowing to pull out the exchangers from the seaport to proceed with cleaning and washing operations using a pressure washer. This operation is much more easy with this kind of exchangers, compared to traditional heat exchangers, and doesn’t require any specific expertise thanks to the high mechanical resistance of TCOIL exchangers.

Furthermore, the video also tells about another similar installation we did in Tempco, for the Ispra Research center of the European Commission. Here, TCOIL exchangers have been immersed inside the water of an artificial drain, using its water to feed heat pumps. Fresh water entails here less material problems, which was here AISI 316. Anyway, the customer wanted an electropolished stainless steel, a special finishing that reduces the deposition and growth of algae and other organisms above the exchangers surfaces, reducing the maintenance needs.

At last, there is also a quick mention of another very interesting application of TCOIL immersion cooling exchangers, having a huge potential. That is the liquid cooling of data centers, of servers and electronic equipments. In this sector is indeed possible as well to take advantage of these exchangers by direct immersion in cold water, providing the cooling of IT devices.

Subscribe here to our Tempco Newsletter – Solid Temperature.

Diathermic oil thermoregulation for DEVILS project’s Turbofan

Commissioning completed last January of a very special thermoregulating unit, for implementation by the Italian Abete company within an innovative concept of a variable flow lubricating oil pump for the DEVILS Project, supported by EU Horizon2020 funds.

This is a very important project aimed to develop a new oil lubrication and heat management system in a VHBE (Very High Bypass Engine) Turbofan, realized by Rolls Royce for future aircraft applications offering high efficiency levels and reduced fuel consumption.
A Turbofan, or fanjet, is a special kind of air breathing jet engine that combines a gas turbine engine and a ducted fan employed in aircraft propulsion, which uses two separated air flows, a cold one and a hot one. Indeed, while in a turbojet all the air taken in passes through the combustion chamber of a turbine, in a turbofan some of the air bypasses it. The ratio of the mass-flow of air that bypasses the engine core divided by the mass-flow of air passing through it is called bypass ratio. A high bypass ratio thus entails lower consumes and reduced noise levels.

Turbofan progetto DEVILS VHBE

Model of gas turbine engine airplane in the section

The DEVILS (Development of VHBR Engines Innovative Lubrication System) project is then intended to develop an innovative oil lubrication system for Turbofans. This kind of engine presents indeed some challenging tasks to the oil lubrication and heat management systems, because the latest trends of developing aircraft engines that consumes less fuel involve higher speeds, loads and temperatures, due to the integration of high-power gearboxes (allowing high bypass ratio) and high-power starter-generators.

Tempco centralina progetto DEVILS

The diathermic oil thermoregulating unit we engineered in Tempco is integrated in the production line and stress testing of the special variable flow lubricating oil pump by Abete. This is a unit designed to work with diathermic oil at high temperatures, up to 300° C, with PID regulation of the temperature control and management through static relais. Likewise all of the similar applications we supply in this field, the unit is equipped with a magnetic drive pump and special components and fittings suitable for continuous operations at such challenging conditions.

The cooling section has a double purpose:

  • Temperature retention for thermal drift compensation
  • Final cooling at the end of the operations

The unit is equipped with a special heat exchanger able to withstand high thermal shocks.

Tempco centralina termoregolazione DEVILS

Beyond Abete and Rolls Royce as end user, the DEVILS Project also sees the contribution of other important companies from the Campania Region: the leading Euro.Soft, which is to deploy all of the avionic controls, and Protom, in collaboration with the Engines Institute of the CNR of Naples and the Industrial engineering department of the Federico II University, as well as the Israeli company TAT. Objective of DEVILS project is as well to research, implement and validate smart fault detection and health monitoring algorithms to assist the system in reducing oil low flow rate needs and allowing advanced functions for predictive maintenance.

Tempco termoregolazione olio diatermico DEVILS

 

Subscribe here to our Tempco Newsletter – Solid Temperature.

Free flow exchangers regeneration and plates’ testing

During the summer break, last August, we completely renewed all of the heat exchangers installed within the production plant of a multinational manufacturer of plastic material grains.
The exchangers were really in bad conditions, and the regeneration intervention has been complete and massive, involving the cleaning and re-gasketing of more than 200 free flow plates and 200 traditional plates, having a thermal transfer surface from 0,4 to 0,3 square meters each.

Tempco calcare piastre scambiatori

After the cleaning of the plates, with the removal of limescale, we proceeded with the test with penetrating liquids, represented here in these pictures with plates under a blu-purple light. This is a crucial step in order to identify all the cracks along the plates (appearing in brighter light).

Tempco test piastre scambiatori

Tempco test liquidi penetranti piastre

The regeneration then also involved the frames of the exchangers, with the renewal of nozzles and related coatings.

The intervention had to be done in a very narrow time span. The customer, indeed, after a slowdown of the production during the lockdown period, had to be ready for the restart. We succeeded in respecting his requests, and all the maintenance and regeneration work has been made during two weeks in August. Everything was then ready for the restart of the production, which has been hectic.

Tempco manutenzione scambiatori

Tempco piastre scambiatori manutenzione

Subscribe here to our Tempco Newsletter – Solid Temperature.

Chocolate smoothness and temperature control

An extremely fine and precise regulation of the temperature is a fundamental requirement within the production of chocolate. Chocolate production plants are very sophisticated ones, and in Tempco we have supplied really a lot of different machinery and solutions for the several production steps involved, from conching to refining, through molding and packaging, covering in fact almost the entire production cycle.

The control of temperature is in fact a crucial need in every step of chocolate production. That typical characteristic, which in advertisings is called ‘smoothness’, being that sensation of chocolate melting in mouth and leaving a more or less sweet taste, depending on personal preferences… well, this effect is strictly related on the accuracy on the treatment of chocolate, both in its mechanical processing and the temperature regulation.

Temperature control starts with the conching phase, one of the most delicate production steps aimed to transform chocolate from solid and gritty to smooth and silky. This process employs mono-fluid systems similar to the ones that are used in the pharma industry. In fact, there is a couple of heat exchangers with cooling and heating fluids, aimed to maintain a constant temperature within the conche machine.

Another crucial step, from the point of view of temperature control, is the refining step. Here, the main requirement in related to cooling. And straight forward to the molding of chocolate. That typical glossy look of a chocolate bar, with that precise pattern divided in small squares, is also obtained thanks to a very accurate temperature regulation of the mold where the chocolate is poured.

Subscribe here to our Tempco Newsletter – Solid Temperature.

Plate heat exchangers regeneration step-by-step

During this time of the year we usually receive many service and maintenance requests for the complete regeneration and revamping of plate heat exchangers. In this case, inspectable type heat exchangers offer the possibility to be opened to proceed with washing and cleaning operations and the inspection of all the parts, in addition to the possibility of an upgrade of the thermal performances.

Let’s then see step-by-step all of the operations we usually do during a heat exchanger regeneration servicing, aimed to restore the efficiency of the exchanger as if it was new.

Very often heat exchangers that come for a revamping are in quite disastrous conditions, after years of functioning. First of all, we open the exchanger in order to inspect the wear status of tie-rods, port linings and gaskets. While doing a complete regeneration of exchangers, we usually suggest customers a complete replacement of the gaskets with a full kit of brand new ones, even if the operation is expensive and invasive, but it is suitable while doing the washing of the plates.

Another operation we usually do, once the plates have been washed and cleaned, is to undergo plates at 100% with an integrity testing using penetrating liquids. It allows to ensure that plates have no micro-holes or hairlines cracks. These could be caused by corrosion, revealing a serious problem of incompatibility of the fluids with the construction material of the plates, or even due to erosion or engendered by a wrong tightening made by the end user. Once the exchanger is reassembled it is indeed complicated to search for possible leaks or mixing.

 

And so, washing of plates, penetrating liquids test and potential discharge of damaged plates. These operations allow to understand if there is any issue of compatibility between the fluids circulating within the exchanger and the material of the plates, alerting the customer.

The exchanger is then re-gasketed, using brand new gaskets, and also potentially damaged port lining – in case of flanged exchangers – and threaded connection ports are replaced. The exchanger is then reassembled, with the attention of replacing the tie-rods, or at least to clean the existing ones. The exchanger gets tightened with the right level, and undergoes a pressure test, aimed to ensure that the two circuits are correctly sealed with no leaks within the exchanger.

Once the pressure test is completed, the plate heat exchanger is ready to be dispatched to the customer. A new label is placed, reporting the date of the revision and complete with all the codes that identify the provided operations.

At last, a further operation we usually offer is to ask the customer if he needs to upgrade the performances of the exchanger in order to meet new requirements of his plant. Is it possible indeed to expand the exchanger, or to make some variations to the design of the plates, giving in fact a brand new life to the plate heat exchanger.

Subscribe here to our Tempco Newsletter – Solid Temperature.

Revamping in temperature regulation of life science reactors

Happy New Year and a good start 2021 to everyone!
During this past Christmas holidays pause, in Tempco we’ve fulfilled a revamping intervention on the interfacing heat exchanger employed for the temperature regulation of reactors in the production plant of a customer in the life science and pharma sector.

Tempco revamping scambiatori pharma

The customer contacted us after more than 15 years of non-stop operations of the plate heat exchanger, contributing to the correct temperature regulation in the production of APIs. The intervention involved the complete regeneration as new of the plates in the heat exchanger.

piastre scambiatori di calore revamping

In addition, in order to fit the new production needs of the customer, we’ve also ensured an increase of the thermal exchange surface of the heat exchanger, which in this kind of thermal machine is possible by simply adding further plates to the exchanger.

Tempco revamping scambiatore pharma

Subscribe here to our Tempco Newsletter – Solid Temperature.