Grosjean crash, when temperature control makes the safety

The accident occurred to Grosjean in a recent Formula 1 Grand Prix prompted me for an interesting more in-depth reading. Eventually also related to the relevance of the control of temperatures required for the manufacturing of today’s safety fiber carbon structures.

Looking at the pictures of the fiber carbon car body after the accident, I suddenly remembered some older accidents that involved in the past other drivers such as Ronnie Peterson in Monza, or also Ayrton Senna and Alex Zanardi. Sadly deployed in really much more serious consequences compared to Grosjean, who will be probably able yet to participate at the next Grand Prix.

A very huge step forward in the safety within F1 is of course due to the driver crash-protection system (Halo) employed in today’s cars, which offers an extreme toughness. So I stumbled upon a very interesting interview to the AD of Dallara, the company that has the exclusive for the manufacturing of carbon fiber chassis of Formula Indy. In the video the AD explains how each and every single carbon fiber ensures the dissipation of energy generated by a possible accident, that otherwise would be discharged directly on the driver, causing fractures and damages to internal organs too.

Then I’ve realized that, with our small contribution, in Tempco we also do our part because we supplied a cooling and fine temperature regulation of furnaces employed for the processing of carbon fiber structures. The application required the thermoregulation and cooling of the furnace, in order to avoid temperatures to exceed upper limit levels.

This is a kind of cooling toward the bottom, then similar to another application we deployed for the cooling and fine thermoregulation of furnaces employed for the production of carbon ceramic brakes, also employed in high-performance cars and airplanes. A crucial step in the production of these special brakes, both for preparing them to further mechanical processing and to guarantee the high mechanical characteristics that define their perfect functionality.

Posted in Cooling, Thermoregulation Unit

Leave a Reply

*